Pharmacokinetics 1

Principles of Drug Therapy

Absorption

Definition: Passage of drug from site of administration to systemic circulation

Mechanisms of absorption of drugs (from the GI tract)

Passive diffusion	 Rapid movement of lipid soluble drugs across the cell membrane. Movement of the water soluble drugs across the aqueous channels (water pores). No energy needed and with concentration gradient.
Facilitated diffusion	 The drugs are carried into inside the cell by carrier or transporter No energy is required and according to the concentration gradient
Active transport	 The drug movement may be against the concentration gradient by drug carrier or transporter. Energy is required
Endocytosis	Drugs of high molecular weight, the drug binds to the cell membrane, dips in and enveloped by the cell membrane

Passive diffusion

Factors influencing absorption – Patient factors

Route of Administration	I.V. and inhalation (Faster) > I.M. > S.C. > Oral >Topical (slower)
Absorbing surface	 Vascularity: (Alveoli > S.C. tissue) Surface area: (Alveoli > Intestine > Stomach) Pathological conditions: Diarrhea decrease oral absorption
Systemic circulation	Shock decrease absorption thus oral and subcutaneous routes are not suitable
Specific factors	Intrinsic factor is essential for vitamin B12 absorption
Co-administration of other drugs and/or food	 S.C. adrenaline (added to local anesthetics) → V.C. absorption of local anesthetics → longer duration of action of local anesthetics Ca⁺² (e.g. in milk) ↓ the oral absorption of tetracyclines (antibiotics)

Factors influencing absorption – Drug factors

Water and lipid solubility	 Completely water-soluble compounds are not absorbed (e.g. barium chloride). Increase lipid solubility lead to increase absorption (lipid/water partition coefficient)
Pharmaceutical preparation	 Dosage form: Solution > Suspension > tablet Shape, size of particles and rate of dissolution of tablets Excipient (filler) containing Ca+2 decreases oral absorption of tetracyclines
Ionization of the drug	 Ionization decreases lipid solubility and absorption of drugs Non-ionized (uncharged) → better absorption Depends on pKa of the drug and pH of the medium Quaternary ammonium compounds → ionized poor absorption Streptomycin has high pKa → always ionized not absorbed orally

The effect of pH on drug absorption

When drugs bind hydrogen (low pH)

 \circ Weak acids become unionized (A⁻ + H⁺ = HA) \circ Weak bases become ionized (B + H⁺ = BH⁺)

⇔Thus

 \odot At low pH weak acids become unionized while the weak bases become ionized

 At high pH weak base drugs become unionized while weak acids become ionized

Accordingly

- \odot Weak acid are more absorbed in acidic media
- \odot Weak bases are more absorbed in alkaline media

рКа

***pKa** is the pH at which the concentrations of the ionized and unionized forms of the drug are equal (Each drug has its own pKa)

Clinical importance of pKa

○ GIT: Aspirin (acidic drug) has low pKa

• Drug molecules become unionized in the empty stomach (low pH) and can enter gastric mucosal cells. In gastric mucosal cells (high pH) aspirin becomes ionized and trapped in gastric mucosal cell "peptic ulceration"

○ Kidney:

- In drug poisoning renal elimination could be enhanced by changing urinary pH to increase ionization of drug and inhibit tubular reabsorption of the drug
- Alkalinization of urine by sodium bicarbonate (to increase urine pH above drug pKa) is useful in acidic drug poisoning e.g. Aspirin and phenobarbital
- Acidification of urine by ascorbic acid (to decrease urine pH below drug pKa) is used in basic drug poisoning e.g. amphetamine

Bioavailability

Definition: the percentage of drug that reaches the systemic circulation and becomes available for biological effect

***Bioavailability** = $\frac{Area under the curve (AUC) after oral route}{Area under the curve (AUC) after IV route} \times 100$

*****Factors affecting bioavailability

- 1. The extent of drug absorption
- 2. 1st pass effect (1st pass metabolism)

1st pass metabolism

Definition: the metabolism of some drugs in a single passage through gut wall, liver or lungs before reaching systemic circulation

Hepatic 1st pass effect

 Nitroglycerin and propranolol pass from GIT to liver where they are extensively metabolized in their 1st pass through liver before reaching systemic circulation

Intestinal 1st pass effect

Estrogens are extensively metabolized in their 1st pass through intestinal wall

Pulmonary metabolism

• After inhalation, nicotine is partially metabolized in the lung

