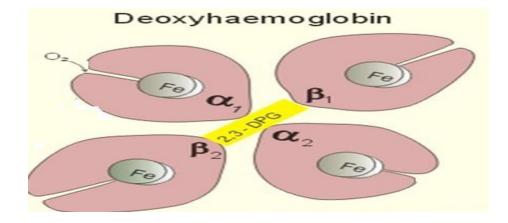
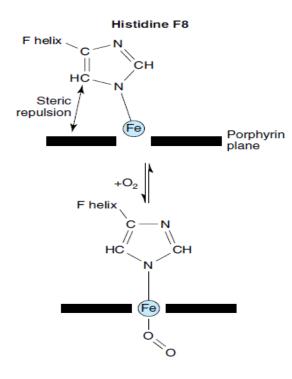

Oxygen Binding & O2 – Hgb dissociation Curve

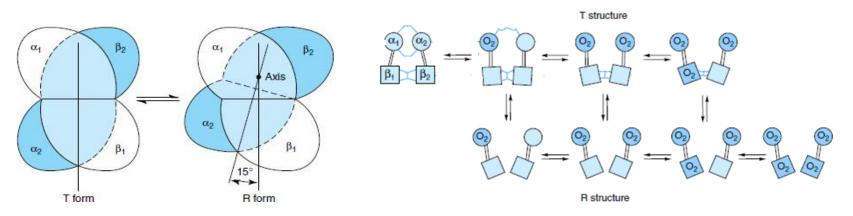

Oxygen Binding

*Oxygen is accessible only to the heme groups of the α -chains when hemoglobin is in T state.

Cooperativity of O₂ Binding in Hemoglobin

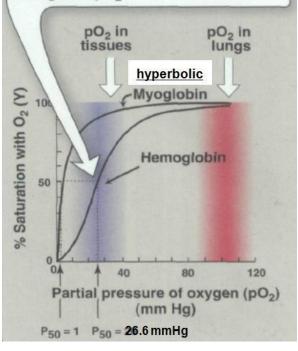

- In the T state, the heme groups of the α-chains are accessible to O₂, while those of the β-chains are not due to steric hindrance from nearby amino acid residues
 - $\circ~$ The binding of the first O_2 molecule is slow and depends on the conformational shift from T to R, which is initiated when O_2 binds to the α -chain heme groups

Cooperativity of O₂ Binding in Hemoglobin


- Binding alters the electronic state of the heme, causing the iron (Fe²⁺) to move into the plane of the porphyrin ring.
 - \circ This movement pulls the proximal histidine closer to the ring, which then induces a shift in the adjacent α/β subunits.

Cooperativity of O2 Binding in Hemoglobin

- Specifically, one pair of subunits rotates by about 15 degrees, breaking salt bridges and promoting the T to R transition across all subunits
- This conformational change significantly increases the affinity of the remaining unoxygenated hemes for O₂. This binding of O2 to hemoglobin is known as Cooperativity of O2 Binding in Hemoglobin and is responsible for the sigmoidal oxygen saturation curve of hemoglobin



Oxygen dissociation curve

- Definition: Describes the relation between the partial pressure of oxygen (x axis) and the oxygen saturation (y axis)
 - The oxygen saturation is the ratio of the amount of oxygen bound to the hemoglobin
 - Hemoglobin's affinity for oxygen increases as more molecules of oxygen bind
 - The curve has a sigmoidal or S-shape
 - The curve for myoglobin has a hyperbolic shape

The oxygen-dissociation curve is steepest at the oxygen concentrations that occur in the tissues. This permits oxygen delivery to respond to small changes in pO_2 .

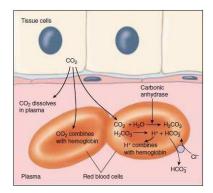
Oxygen dissociation curve

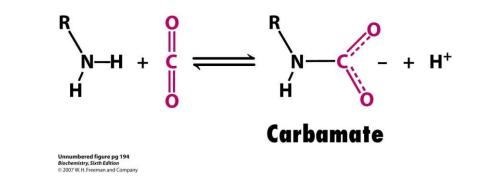
<u>pO2 (</u> mmHg)	% saturation of Hb	<u>pO2 (</u> mmHg)	<u>% saturation of Hb</u>
100 in alveoli	98%	20 in working muscle	20%
40 in resting muscle	75% thus it deliver 23% of its O_2 to resting muscle and leaving the rest of the oxygen in the blood as a reserve and to maintain life for four to five minutes if breathing is interrupted.	10 in vigorous exercising muscle	10%

The 2,3-bisphosphoglycerate (2,3-BPG or 2,3-DPG)

- High levels of 2,3-DPG shift the curve to the right
- The binding of 2,3-BPG to Hb promotes the release of O2
 - The presence of 2,3-BPG significantly reduces the affinity of hemoglobin for oxygen
 - The concentration of 2,3-BPG in the red blood cell increases in response to chronic hypoxia seen in :
 - 1. COPD 2. High altitudes 3. Chronic Anemia

Reduced Hb-O2 affinity: shift the curve to right Increase Hb-O2 affinity: shift the curve to the left

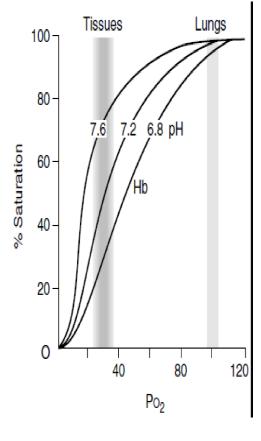



*Binding of CO2, in two ways :

- 1. Formation of carbamino- hemoglobin
 - 20% of CO2 is carried as carbamino- hemoglobin bound to the uncharged $\alpha\text{-amino}$ groups of hemoglobin

$\mathsf{Hb}\text{-}\mathsf{NH2} + \mathsf{CO2} \leftrightarrow \mathsf{Hb}\text{-}\mathsf{NH}\text{-}\mathsf{COO}\text{-} + \mathsf{H}\text{+}$

• The binding of CO2 stabilizes the T (taut) or deoxyhemoglobin, resulting in a decrease in its affinity for oxygen



Binding of CO2 , in two ways :

- 2. B- Bohr effect
- The binding of protons by hemoglobin lowers its affinity for oxygen therefore, a shift to the right in the oxygen dissociation curve.
- The pH of the blood decreases as it enters the tissues because of CO2 produced by metabolism
- in tissues in which the pH of the blood is low because of the CO2 produced by metabolism, oxygen is released from hemoglobin.

Temperature

 \circ An increase in temperature shifts the curve to the right

- Increasing the temperature denatures the bond between oxygen and haemoglobin
- This has physiological importance during exercise since the temperature of muscle tissue is higher than 37°C, and oxygen can be unloaded from Hb more easily at the higher temperature

The relationship of hydrogen ions is inversely proportionate with levels of 2,3 BPG

