
# Hemoglobin and Myoglobin

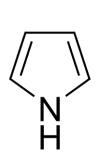


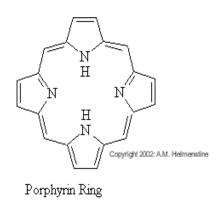
# Myoglobin

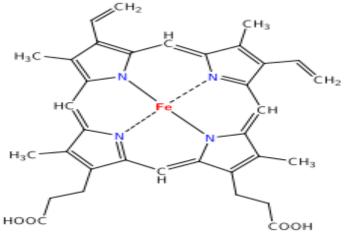
- Definition : an intracellular heme protein primarily found in muscle cells. It plays a crucial role in storing oxygen and facilitating its diffusion within these tissues.
  - $\circ$  **Structure :** Composed of a single polypeptide chain of 153 amino acids, Approximately 80% of its structure is made up of  $\alpha$  helices, organized into eight segments labeled A–H.
    - The heme group is situated between the E and F helices, within a globular structure that forms a cradle for the heme and oxygen binding.









### Heme Group


Both myoglobin and hemoglobin have heme

✤Heme is a complex of porphyrin and ferrous iron (Fe<sup>2+</sup>)

- $\odot$  Porphyrins are a group of organic compound that have four pyrrole subunits interconnected via  $\alpha$ -methylene bridges (=CH-)
  - A pyrrole ring is a group of four carbon atoms and a nitrogen atom bonded together in a ring









# Hemoglobin

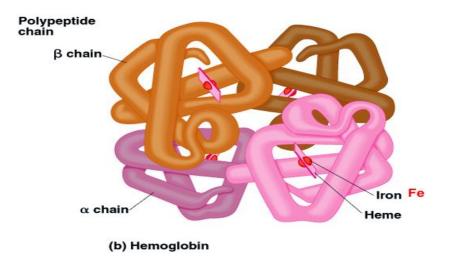
Definition : a globular protein found in red blood cells, with each cell containing around 270 million hemoglobin molecules

- $\circ$  **Structure :** composed of four polypeptide chains: two alpha ( $\alpha$ ) chains and two beta ( $\beta$ ) chains.
  - The β chain is 146 amino acids long, making it shorter than the myoglobin chain (153 residues) due to a shorter H helix.
  - The  $\alpha$  chain has 141 residues, also featuring a shortened H helix and lacking the D helix.



Myoglobin (Mb)

 $\alpha$ -Globin (Hb $\alpha$ )


 $\beta$ -Globin (Hb $\beta$ )

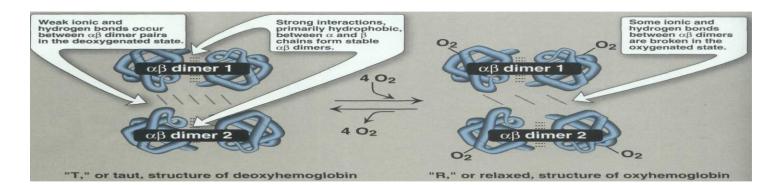


# Quaternary Structure of Hemoglobin

\*There are two identical dimmers, dimmer one  $\alpha 1\beta 1$  and dimmer two  $\alpha 2\beta 2$ .

 The two polypeptide chains within each dimmer are held tightly together, primarily by hydrophobic interactions although Ionic (Salt Bond ) and hydrogen bonds play a role.






# T & R forms of Hemoglobin

T form: The deoxy form of hemoglobin is called the "T" (tense) form
 The T form is the low oxygen-affinity form of hemoglobin
 the two αβ dimmers interact through a network of ionic bonds and hydrogen bonds

R form : The oxygenated form of hemoglobin is called the (relaxed) form

 The R form is the high oxygen-affinity form of hemoglobin
 binding of oxygen to hemoglobin causes the rupture of some of the ionic bonds and hydrogen bonds





# RBCs

Biconcave shape gives them a much greater surface area & flexibility to squeeze through tiny capillaries

Carbon monoxide binds to heme on the same place as that of O<sub>2</sub>

- Carbon monoxide (CO) has a greater affinity for hemoglobin than oxygen
- Therefore the haemoglobin is no longer available for oxygen transportation causing hypoxia tissue death
- $\odot$  To reverse the effects of carbon monoxide, pure oxygen is needed to be introduced



Chapter 7 Opener part 1 Biochemistry, Sixth Edition © 2007 W.H. Freeman and Company

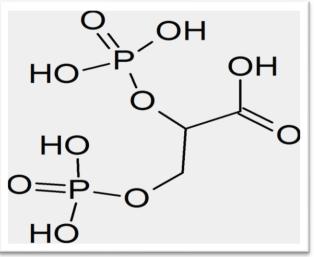


### Methemoglobin

- Definition : a form of hemoglobin where the iron is oxidized from the ferrous (Fe<sup>2+</sup>) state to the ferric (Fe<sup>3+</sup>) state
- Oxygen Binding: For hemoglobin to bind oxygen, iron must remain in the Fe<sup>2+</sup> state; when oxidized to Fe<sup>3+</sup>, it cannot carry oxygen
- Reduction System: Red blood cells possess a system to convert Fe<sup>3+</sup> back to Fe<sup>2+</sup>, ensuring proper oxygen transport. This system includes:
  - **NADH**: Generated from glycolysis, serving as a reducing agent.
  - Cytochrome b5 reductase (methemoglobin reductase): Catalyzes the reduction process.
  - **Cytochrome b5**: Transfers an electron to reduce methemoglobin.



### Allosteric effects

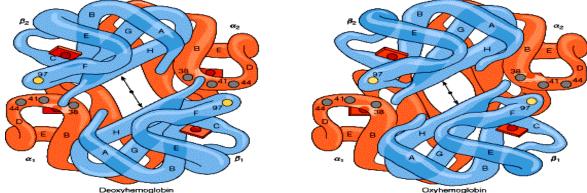

The ability of hemoglobin to reversibly bind oxygen is affected by the pO<sub>2</sub>, the pH of the environment, the pCO<sub>2</sub> and the availability of 2,3-bisphosphoglycerate (2,3-BPG)

- Allosteric : ("other site") effectors , because their interaction at one site on the hemoglobin molecule affects the binding of oxygen to heme groups at other locations on the molecule
- The binding of oxygen to myoglobin is not influenced by the allosteric effectors of hemoglobin.



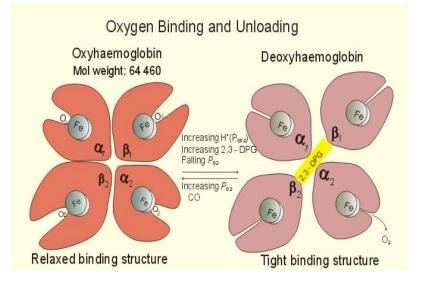
# 2,3-Bisphosphoglycerate (2,3-BPG)

- \*2,3-Bisphosphoglycerate (2,3-BPG) : is a glycolytic intermediate that plays a crucial role in regulating oxygen binding to hemoglobin
  - Low partial pressure of oxygen (pO2) in peripheral tissues stimulates the synthesis of 2,3-BPG in red blood cells (RBCs).
  - 2,3-BPG binds to partially deoxygenated hemoglobin, lowering its affinity for oxygen

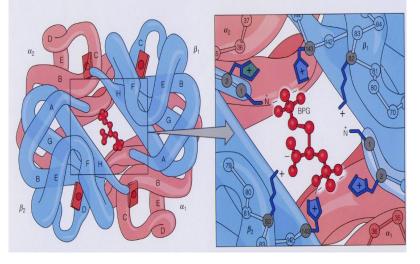





# 2,3-Bisphosphoglycerate (2,3-BPG)


#### **\***Effect on Hemoglobin:

- There is one binding site for 2,3-BPG located in the central cavity of hemoglobin, formed by interactions between four amino acids
- Stabilization of Deoxyhemoglobin: Upon binding, 2,3-BPG cross-links the two β-subunits, forming ionic bonds with key amino acids, including the N-terminus of carbons 1 and 2, 143 histidine, and the carboxyl group of 82 lysine. This stabilizes the deoxy conformation of hemoglobin, favoring oxygen dissociation.



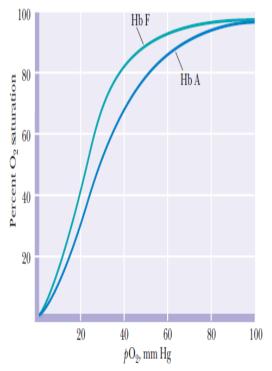



# 2,3-Bisphosphoglycerate (2,3-BPG)



Binding of 2, 3-bisphosphoglycerate to deoxyhemoglobin






# Fetal Hemoglobin

#### \*Fetal Hemoglobin is α2γ2

#### Fetal Hb has a higher affinity for O<sub>2</sub> because it has a lower affinity for 2,3-BPG

- $\circ$  the  $\beta$  -chains are replaced by 146-residue subunits called  $\gamma$  chains (gamma chains)
  - 2,3-BPG binds less effectively with the  $\gamma$  chains of fetal Hb
  - Fetal γ chains have <u>Serine</u> (polar uncharged) instead of Histidine at position 143, and thus lack two of the positive charges in the central BPGbinding cavity





| Hemoglobin                   | Myoglobin                      |
|------------------------------|--------------------------------|
| In RBCs                      | In Muscles                     |
| Carrier of O2                | Reservoir of O2                |
| Has Quaternary Structure     | No Quaternary Structure        |
| Can carry CO2                | Can't carry CO2                |
| Can bind 2,3 BPG             | Can't bind 2,3 BPG             |
| Shows Cooperativity          | No Cooperativity               |
| O2 affinity is lower than Mb | O2 affinity is higher than Hbg |

