Bacterial Structure and Classification

NEDEMI/ ACADEMY

Shapes and Forms of Bacteria

Overview of Shapes of Bacteria

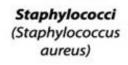
Greek		English	COCCI	BACILLI	OTHERS		
Cocci		Spherical	\bigcirc \bigcirc		Spirochete		
Coccobacilli		In between	Coccus Diplococci	- The second			
Bacilli		Rod-shaped		Streptobacilli			
Curved Vibrio		Coma-shaped	Streptococci				
bacilli	Spirillum	Spiral or helical	° Q		Vibrio		
Spirochaeta		Corkscrew-like			2		
Branching filaments			Staphylococci	Diplobacilli	Spirilla		

1. Cocci (Spherical)

Cocci has originated from a greek word; kokkos = seed.

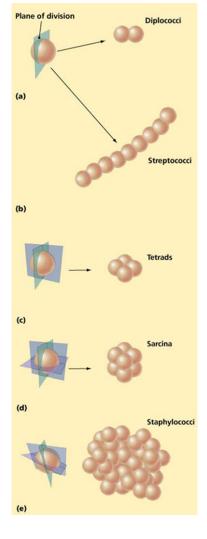
 $(0.5\mu - 1.25\mu \text{ in diameter})$

On the basis of arrangements cocci are classified to


- **Micrococci**: appears singly.
- **Diplococcus**: appear in a pairs of cells.
- Streptococci: appear in rows of cells or in chains.
- Staphylococci: arrange in irregular clusters like bunches of grapes
- **Tetracoccus**: arrange in a sequence of four.
- Sarcinae: arrange in cuboidal or in a different geometrical.

Diplococci (Streptococcus pneumoniae)

Streptococci (Streptococcus pyogenes)

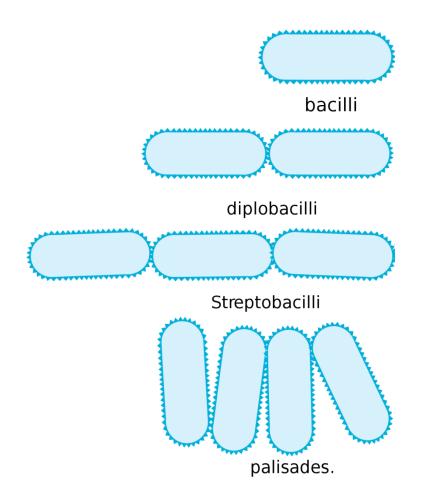

Why do bacterial cells have different arrangement?

- \circ The plane in which a bacterial cell divides influences its arrangement.
- Bacteria can divide in one, two, or three planes, leading to different structural patterns
- Single plane: Division in one plane produces chains (e.g., Streptococcus).
- **Two planes**: Division in two planes results in a sheet-like arrangement (e.g., Diplococcus or Neisseria).
- Three planes: Division in three planes forms clusters (e.g., Staphylococcus)

Daughter Cell Attachment:

- After binary fission, whether the daughter cells separate or remain attached determines bacterial arrangement
 - Free Separation: If the cells separate after division, individual cells are seen (e.g., E. coli).
 - **Partial Separation**: If the daughter cells stay attached, different groupings form, like chains (e.g., Streptococcus) or clusters (e.g., Staphylococcus).
 - **Complete Attachment**: Some bacteria, like Streptomyces, form long filamentous chains because the cells don't separate after division.

2. Bacilli (Rods)


From greek word, bacilli means rod or stick.

There ends are rounded flat or pointed.

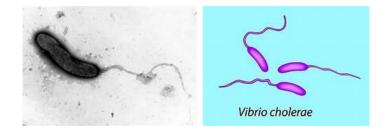
- $\bigstar 0.5\text{-}1.2\mu$ in diameter and 3- 7μ in length.
- Flagellated or non-flagellated.

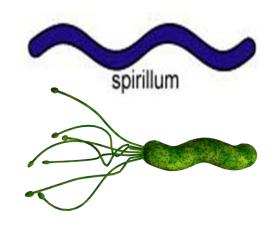
They may be of following types

- Monobacillus: arrange singly.
- \odot **Diplobacillus**: present in a group of two.
- \odot Streptobacillus: in chains.
- Palisade: Very rare

Shapes of Bacteria cont.

3. Vibrio or Coma

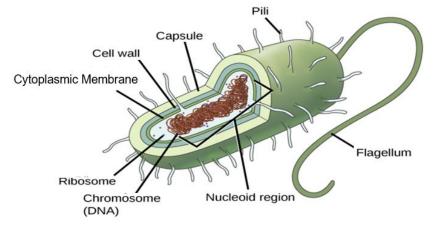

- \odot They bear flagella at their end.
- \odot 1.5-1.7 μ in diameter and upto 10 μ in length \odot e.g. Vibrio cholarae.


4. Spiral or Helical

From greek word; spira means coiled.
A single spirillum has more than one turn of helix.
10-50μ in length and 0.5 - 3μ in diameter.
They are flagellated

5. Spirochaeta

- These bacteria appear like a corkscrew.
- \odot Their length is more as compared to their diameter.
- \odot Their body is more flexible.



The Ultrastructure of The Bacterial Cell

The Ultrastructure of The Bacterial Cell

 Cell wall Flagella Pili Fimbriae Capsule Lipopolysaccharides (LPS) Chromosome (DNA) Plasmid Eniseme 	Structures external to the cytoplasmic membrane	Structures internal to the cell wall		
	 Flagella Pili Fimbriae Capsule 	 Mesosomes Ribosomes Cytoplasm Inclusion Bodies Chromosome (DNA) 		

Structures external to the cytoplasmic membrane

1. The cell wall

↔Functions

- $\,\circ\,$ Very rigid structure and provide definite shape to the cell
- $\,\circ\,$ Preventing the cell from expanding and eventually bursting because of uptake of water
- $\,\circ\,$ Resistant to extremely high pressure.
- $\,\circ\,$ Essential for the growth and division of bacteria
- $\,\circ\,$ Cell wall protects against osmotic lysis

Gram staining steps

- **1. Fixation**: Heat-fix the bacterial smear on the slide.
- **2. Primary Stain**: Apply crystal violet stain for 1 minute.
- **3. Mordant**: Add iodine solution to form a crystal violet-iodine complex.
- **4. Decolorization**: Wash with alcohol or acetone for a few seconds (removes stain from Gramnegative bacteria).
- 5. Counterstain: Apply safranin to stain Gram-negative bacteria for 1 minute.
- **Results**: Gram +ve bacteria appear purple/blue, and Gram -ve bacteria appear pink/red.

The difference between Gram +ve & -ve cell wall

Gram positive	Gram negative		
Inner most plasma membraneThick peptidoglycan cell wall	 Inner most plasma membrane Thin peptidoglycan cell wall Another outer plasma membrane 		
More easily treatable with antibiotics	Harder to treat with antibiotics		
Stain purple/violet after Gram Stain.	Stain red/pink after Gram Stain		
Peptidoglycan forms 40-80% of the cell dry weight.	Peptidoglycan forms 5-10% of the cell dry weight.		
Cell wall Plasma membrane Protein	wall Porins		

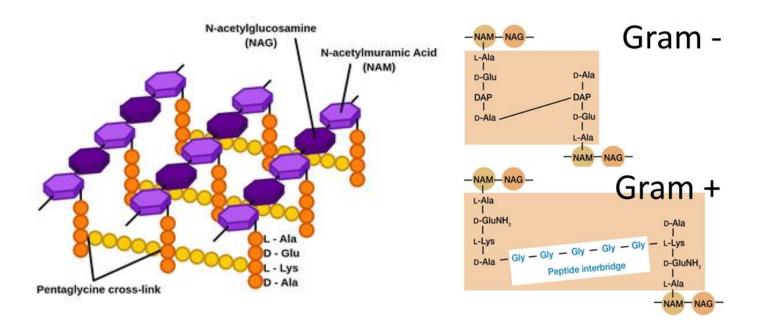
Plasma membrane

Gram-

negative

bacteria

Gram-

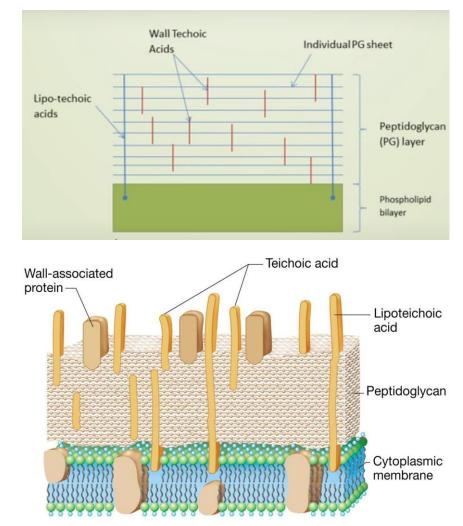

bacte

positive

1. The cell wall

* Peptidoglycan

- It is a rigid mesh made up of ropelike linear polysaccharide chains made up of repeating disaccharides of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM)
- \odot Tetrapeptide attached to NAM.

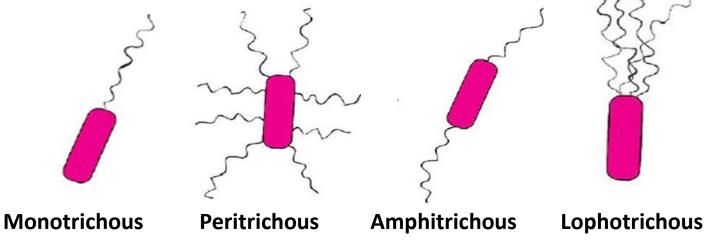

1. The cell wall

Teichoic and Lipoteichoic acids

- Teichoic acids: copolymers of glycerol phosphate or ribitol phosphate and carbohydrates linked via phosphodiester bonds.
- Lipoteichoic acids (LTA): Long chains of ribitol or glycerol phosphate

\odot Functions

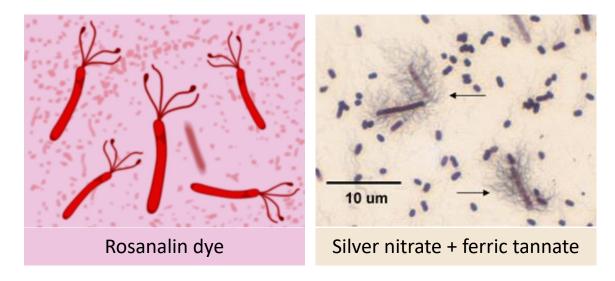
- Anchor peptidoglycan layers to the plasma membrane
- Attachment to other bacteria and to specific receptors on mammalian cell surfaces.

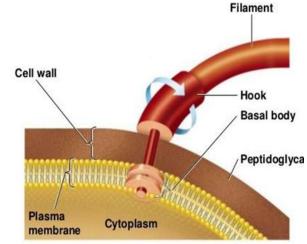


2. Flagella

They are flexible, whip like appendage (singular flagellum).

- AMeasures 4-5 μ long.
- They are made up of protein flagellin (MWt, 40,000)
- The location of flagella varies in various bacteria.
- The bacteria which lack flagella are referred as atrichous.
- Bacteria can be divided into following types based on the location of flagella.

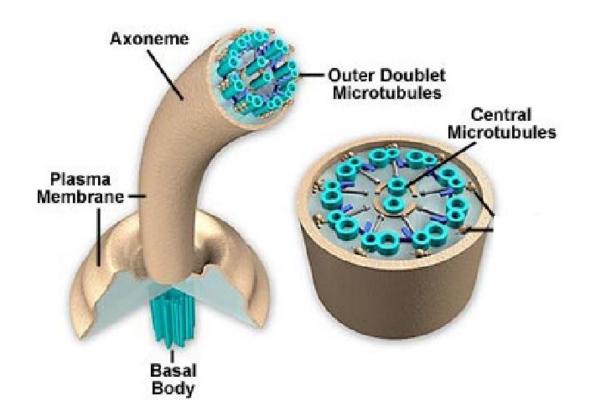




2. Flagella

Each bacterial flagellum is structurally differentiated into three parts

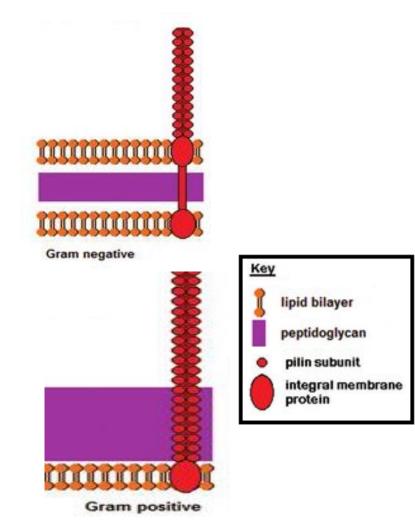
- \odot Basal body
- $\circ \, \text{Hook}$
- \odot Main filament or shaft
- ✤Flagella stain



2. Flagella

Ultrastructure of flagellum

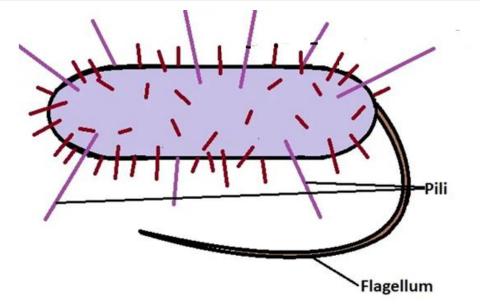
- Flagella are membrane bound cylinders about 0.2 μm in diameter.
- $\odot\,\mbox{The strands}$ called axoneme.
- The axoneme consists of 9 pairs of microtubule doublets arranged in a circle around 2 central tubules.
- This is called 9+2 pattern of microtubules.



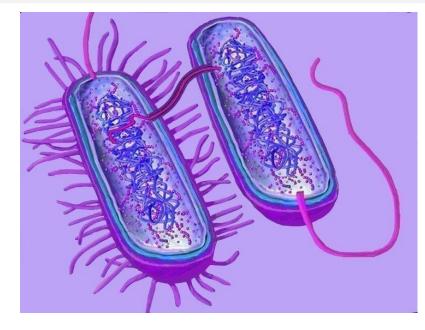
Ultrastructure of Cilia and Flagella

3. Pilli

- Definition: hair like appendages present on the surface of most of the gram negative bacteria, but can be found in Gram-positive bacteria
- They are smaller than flagella, have no role in the motility of bacteria.
- A single bacterial cells bears about 100-500 pili which are arranged peritrichously.
- There origin is from cytoplasm and penetrate through the peptidoglycan layers of the cell wall.
- Two types: Somatic pili and sex pili or conjugate pili



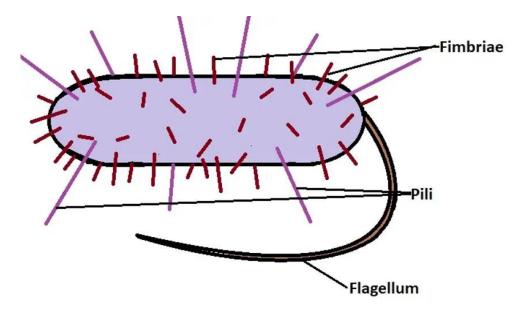
3. Pilli

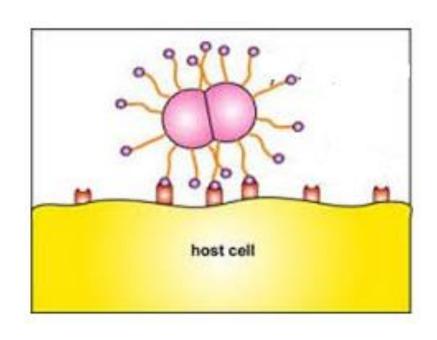

Somatic pili

- Each bacterial cell bears about 100 somatic pili.
- Function: is to help the bacterium for attachment to a substratum.

Sex pili

- Also known as conjugate pili and F pili
- Allow the transfer of DNA between bacteria, in the process of **bacterial conjugation**. This can result in dissemination of genetic traits, such as antibiotic resistance, among a bacterial population





4. Fimbriae

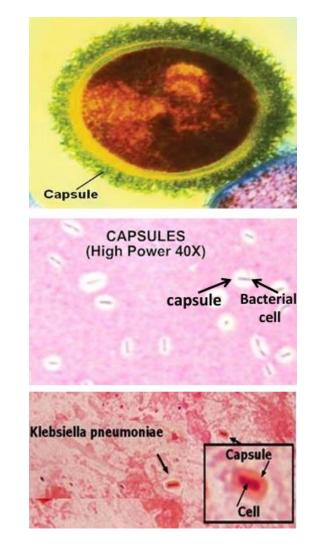
Definition: a short pilus that is used to attach the bacterium to a surface. They are sometimes called "attachment pili".

Fimbriae are either located at the poles of a cell, or are evenly spread over its entire surface.

5. Capsule

It consists of a network of fine strands

Divided into two groups

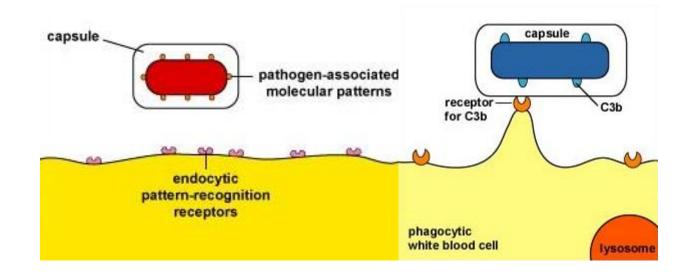

- $\circ~\mbox{Macrocapsule}:$ It is about 0.2 μm thick and can be seen under a light microscope
- Microcapsule: It can't be seen under a light microscope but can be demonstrated immunologically

Chemical composition

- $\,\circ\,$ They are made up of di- or polysaccharides or polypeptides
- The polysaccharide may be homo polysaccharide or heteropolysaccharide

Functions

- Protection against temporary drying by binding water molecules
- \circ Antiphagocytic



5. Capsule

Antiphagocytic effect of capsule

 Capsules can resist attachment by blocking pathogen-associated molecular patterns (PAMPs) — molecules like peptidoglycan, teichoic acids, lipopolysaccharides, mannans, and glucans, commonly found in microbial cell walls — from binding to pattern-recognition receptors on the surface of phagocytes, which are involved in endocytosis.

6. Lipopolysaccharides (LPS)

Found only in the outer membrane of Gram-negative bacteria
Composed of three covalently linked parts

Lipid A		Core accharide	O-antigens		LPS	O-Antigen
Firmly embedo in the membra		ted at the ane surface	Extend like whiskers from the membrane surface into the surrounding medium	Cell wall Lipid bilayer Structure	Hep Hep Hep	Core poly saccharide
Helps stabilize outer membra structure	ane negativ	outes to the e charge on ell surface	Protection from host defenses	Gram-negative bacteria	CON LOS TOS CON CON CON	Lipid A

6. Lipopolysaccharides (LPS)

Notes

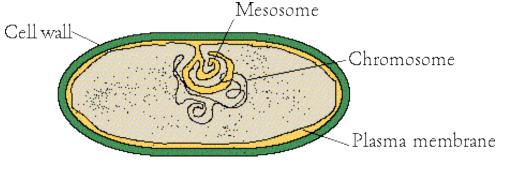
o O antigens attributable to many antigenic properties of gram -ve bacteria

Lipid A acts as an endotoxin

- Lipid A released when cells lyse
- Activating white cells, especially macrophages and monocytes
- **Causes systemic effects**: Fever, Shock, Blood coagulation, Weakness, Diarrhea, Inflammation, Intestinal Hemorrhage, Fibrinolysis

Endotoxins vs. Exotoxins

	Endotoxins	Exotoxins
Definition	Lipopolysaccharide-protein complexes, produced at the time of cell death	polypeptide proteins excreted by few species of bacteria
Location	Part of the cells and located on chromosomal genes	Released from the cells and located on extrachromosomal genes (e.g. plasmids)
Toxicity	Endotoxin is moderately toxic	Exotoxin is highly toxic
Source	Produced after the disintegration of the gram-negative bacteria	Produced in the living gram positive bacteria and gram-negative bacteria
Boiling	It does not get denatured on boiling	It gets denatured on boiling
Diseases	Meningococcemia, sepsis by gram -ve rods	Botulism, Diphtheria, Tetanus
Effects	General symptoms are fever, diarrhea, vomiting, etc.	Cytotoxin, enterotoxin or neurotoxin with defined action on cells or tissues.
Neutralization	Cannot be neutralized by antibodies	Can be neutralized by antibodies
Vaccines	No effective vaccines are available	Effective vaccines are available
Examples	E.coli, Shigella, V. cholera, S. Typhi	S. aureus, S. pyogenes, B. anthracis, B. cereus


1. Cytoplasmic Membrane

 \odot Immediately below the cell wall is cytoplasmic membrane.

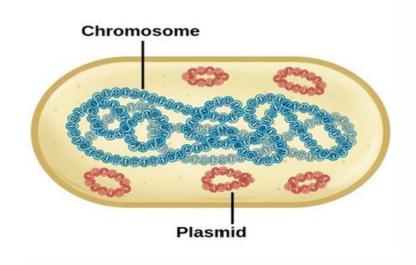
○ Similar in both gram + ve and-ve bacteria

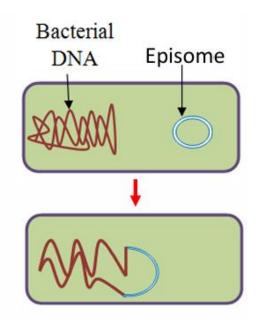
2. Mesosomes

- The mesosome was thought to increase the cell's surface area, aiding the cell in cellular respiration
- This is analogous to cristae in the mitochondrion in eukaryotic cells, which are fingerlike protrusions and help eukaryotic cells undergo cellular respiration. A site for oxidative phosphorylation

3. Inclusion Bodies

 \circ Granules of organic or inorganic material that are stocked by the cell for future use


Inclusion	Composition	Function	
Glycogen	Poly-glucose	Reserve carbon and energy source	
Poly-betahydroxybutyric acid(PHB)	Lipid	Reserve carbon and energy source	
Poly-phosphates	Polymers of PO ₄	Reserve phosphate, possibly high- energy PO ₄	
Sulfurglobules	Elemental S	Reserve energy and or electrons	
Magnetosomes	Magnetite (iron oxide)	Provide orientation in magnetic field	
Gasvesicles	Protein shells inflated with gases	Provide buoyancy in aquatic environments	
Parasporal crystals	Protein	Produced by endospore forming Bacilli-toxic to insects	



4. Episome vs. Plasmid

 Plasmid and episome are two types of DNA elements which exist independently of the genome

• The main difference between plasmid and episome is that plasmid does not integrate into the genome, whereas episome can integrate into the genome

